Всегда Ли Справедлив Закон Сохранения Электрического Заряда

Как известно, все тела состоят из атомов, в состав которых входят электроны и протоны. Количество электронов и протонов в составе незаряженного тела одинаковое. Поэтому такое тело не проявляет электрического действия на другие тела. Если же два тела находятся в тесном контакте (при натирании, сжатии, ударе и т.п.), то электроны, связанные с атомами значительно слабее, чем протоны, переходят с одного тела на другое.

Если соединить эти электрометры стеклянной палочкой, то никаких изменений не произойдёт. Это подтверждает тот факт, что стекло является диэлектриком. Если же для соединения электрометров использовать металлический стержень А (рис. 2.2), держа его за не проводящую электричество ручку В, то можно заметить, что первоначальный заряд разделится на две равные части: половина заряда перейдёт с первого шара на второй. Теперь заряд каждого электрометра соответствует 3 делениям шкалы. Таким образом, первоначальный заряд не изменился, он только разделился на две части.

Закон сохранения заряда подтверждается и простыми опытами по электризации тел. Укрепим на стержне электромера металлический диск и, положив на него прослойку из сукна, поставим сверху еще один такой же диск, но с ручкой из диэлектрика. Совершив несколько движений верхним диском по изоляционной прослойке, уберем его в сторону. Мы увидим, что стрелка электромера отклонится, свидетельствуя о появлении на сукне и соприкасающемся с ним диске электрического заряда. Далее прикоснемся вторым диском (которым мы терли о сукно) к стерж­ню второго электромера. Стрелка этого электромера отклонится примерно на такой же угол, что и стрелка первого электромера. Это означает, что при электризации оба диска получили одинако­вый по модулю заряд. Что можно сказать о знаках этих зарядов? Для ответа на этот вопрос завер­шим опыт, соединив электромеры металлическим стержнем. Мы увидим, как стрелки приборов опустятся вниз. Нейтрализация зарядов свидетельствует о том, что они были равны по модулю, но противоположны по знаку (и, следовательно, в сумме давали нуль).

Одним из подтверждений закона сохранения электрического заряда служит строгое равенство (по абсолютной величине) электрических зарядов электрона и протона. Изучение движения атомов (молекул) и микроскопических тел в электрических полях подтверждает электронейтральность вещества и, соответственно, равенство зарядов электрона и протона (и электронейтральность ней­трона) с точностью до 10 -21 .

Закон сохранения электрического заряда

Что бы ни происходило в мире, во вселенной есть некий полный электрический заряд, количество которого всегда остается неизменным. Даже если заряд по какой-нибудь причине перестал существовать в одном месте, то он обязательно окажется в другом месте. Это значит, что заряд не может безвозвратно исчезнуть.

Вам будет интересно ==>  Объявили приставы в розыск. Живу в другом городе

Данный факт установил и исследовал Майкл Фарадей. Однажды он возвел в своей лаборатории огромный полый металлический шар, к наружной поверхности которого подключил сверхчувствительный гальванометр. Размер шара позволял разместить внутри него целую лабораторию.

Электризация тел

2. Из простых опытов следует, что сила взаимодействия между заряженными телами может быть больше или меньше в зависимости от величины приобретённого заряда. Таким образом, можно сказать, что электрический заряд, с одной стороны, характеризует способность тела к электрическому взаимодействию, а с другой стороны, является величиной, определяющей интенсивность этого взаимодействия.

Если заряженным телом коснуться стержня электроскопа, то листочки электроскопа разойдутся, поскольку они приобретут заряд одного знака. То же произойдёт со стрелкой электрометра, если коснуться заряженным телом его стержня. При этом, чем больше заряд, тем на больший угол отклонится стрелка от стержня.

закон сохранения заряда — krūvio tvermės dėsnis statusas T sritis fizika atitikmenys: angl. charge conservation law; law of conservation of electric charge vok. Erhaltungssatz der elektrischen Ladung, m; Ladungserhaltungssatz, m rus. закон сохранения заряда, m; закон… … Fizikos terminų žodynas

ЗАРЯДА СОХРАНЕНИЯ ЗАКОН — один из фундаментальных строгих законов природы, состоящий в том, что алгебр. сумма электрич. зарядов любой замкнутой (электрически изолированной) системы остаётся неизменной, какие бы процессы ни происходили внутри этой системы. Установлен в 18… … Физическая энциклопедия

Когда происходит электризация тела, то есть когда отрицательный заряд частично отделяется от связанного с ним положительного заряда, выполняется закон сохранения электрического заряда. Закон сохранения заряда справедлив для замкнутой системы, в которую не входят извне и из которой не выходят наружу заряженные частицы. Закон сохранения электрического заряда формулируется следующим образом:

  1. Электризация тел при соприкосновении. В этом случае при тесном контакте небольшая часть электронов переходит с одного вещества, у которого связь с электроном относительно слаба, на другое вещество.
  2. Электризация тел при трении. При этом увеличивается площадь соприкосновения тел, что приводит к усилению электризации.
  3. Влияние. В основе влияния лежит явление электростатической индукции, то есть наведение электрического заряда в веществе, помещённом в постоянное электрическое поле.
  4. Электризация тел под действием света. В основе этого лежит фотоэлектрический эффект, или фотоэффект, когда под действием света из проводника могут вылетать электроны в окружающее пространство, в результате чего проводник заряжается.

Урок физики в 10-м классе — Электрический заряд

  • АРМ учителя, мультимедийный проектор, наличие программ
  • Кусочки бумаги, эбонитовая и стеклянная палочки, два электростатических маятника, бумажные гильзы, два электрометра с принадлежностями, набор для проведения исследования.
  • Видео фрагмент Два знака заряда.аvi
  • Флеш-ролики: Взаимодействие заряженных тел; закрепление
  • Презентация к уроку «Электрический заряд. Закон сохранения электрического заряда».
Вам будет интересно ==>  Ветерану Труда Положен Земельный Участок

Учитель. Материал для записи в тетрадь учащихся. 1. Понятие электрического заряда. 2. Буквенное обозначение электрического заряда. 3. Единица электрического заряда в Международной системе единиц. Слайд 4.

Электрический заряд

Взаимодействие атомов и молекул, которое мы рассматривали при изучении молекулярно-кинетической теории, также является электромагнитным. Электромагнитное взаимодействие определяет свойства веществ в различных агрегатных состояниях и их химические превращения. Оно же ответственно за обмен веществ в человеческом организме.

В XVI веке Уильям Гильберт обнаружил, что свойством притягивать лёгкие предметы обладает не только янтарь, но и многие другие тела, предварительно натёртые кожей или другими мягкими материалами. Это явление он назвал электризацией (так как янтарь по-гречески звучит как, электрон).

Закон сохранения электрического заряда

Одним из полезнейших приемов в физике является выявление совокупных (суммарных) свойств системы, которые не изменяются ни при каких изменениях ее состояния. Такие свойства, выражаясь научным языком, являются консервативными, поскольку для них выполняются законы сохранения. Любой закон сохранения сводится к констатации того факта, что в замкнутой (в смысле полного отсутствия «утечки» или «поступления» соответствующей физической величины) консервативной системе соответствующая величина, характеризующая систему в целом, со временем не изменяется.

При более высоких энергиях, однако, электрически заряженные элементарные частицы начинают вступать во взаимодействия друг с другом, и проследить за соблюдением закона сохранения электрического заряда становится значительно сложнее, однако он выполняется и в этом случае. Например, при реакции спонтанного распада изолированного нейтрона происходит процесс, который можно описать следующей формулой:

После того как мы уберем верхний диск электрометр покажет наличие заряда. У него отклонится стрелка. Далее мы возьмём диск и коснемся им стержня второго электрометра. У него также стрелка отклонится, указывая на наличие заряда. Хотя заряд будет противоположного знака. Далее если мы соединим стержни электрометров, то стрелки вернутся в исходное положение. То есть заряды скомпенсируют друг друга.

Что же произошло в данном эксперименте. Когда мы потерли диски друг о друга, произошло разделение зарядов в металле дисков. Изначально каждый диск был электрически нейтрален. Один из них получил избыток электронов, то есть отрицательный заряд. У другого получилась недостача электронов, то есть он стал, заряжен положительно.

В целом заряд атома любого вещества равен нулю, так как положительный заряд ядра атома компенсируется противоположным зарядом электронных оболочек атома. Очень сильное взаимодействие между зарядами практически исключает самопроизвольное появление заряженных макроскопических тел. Так, сила кулоновского притяжения между электроном и протоном в атоме водорода в 1039 раз больше их гравитационного взаимодействия.

Вам будет интересно ==>  Предварительный Договор Купли Продажи Квартиры Имеет Ли Юридическую Силу

Перемещение зарядов либо отсутствует, либо происходит так медленно, что возникающие при движении зарядов магнитные поля ничтожны. Сила взаимодействия между зарядами определяется только их взаимным расположением. Следовательно, энергия электростатического взаимодействия – потенциальная энергия.

При электризации тел выполняется закон сохранения электрического заряда. Этот закон справедлив для системы, в которую не входят извне и из которой не выходят наружу заряженные частицы, т. е. для замкнутой системы. В замкнутой системе алгебраическая сумма зарядов всех частиц остается неизменной:

Опыт с электризацией пластин доказывает, что при электризации трением происходит перераспределение имеющихся зарядов между нейтральными в первый момент телами. Небольшая часть электронов переходит с одного тела на другое. Новые заряженные частицы не возникают, а существовавшие ранее не исчезают. Алгебраическая сумма положительных и отрицательных зарядов тел равна нулю.

Закон сохранения электрических зарядов

Пластинку из органического стекла по­трем пластинкой, поверхность которой по­крыта бумагой. Если после этого коснемся металлических шариков каждой пластинкой, то увидим, что стрелки гальванометров от­клонятся на одинаковый угол (рис. 4.10). Для определения знака полученных зарядов под­несем поочередно к обоим шарикам эбо­нитовую палочку, потертую мехом. Один элект­рометр уменьшит показания, а другой — уве­личит. Это свидетельствует о том, что шары электрометров имеют заряды противополож­ных знаков. Проверить эти утверждения мож­но с помощью другого опыта. Для этого со­единим проволокой на изоляционной ручке оба шара на электрометрах. Стрелки обоих электрометров сразу упадут до нуля (рис. 4.11). Это свидетельствует о полной нейтрализации зарядов. Анализ проведенных опытов пока­зывает, что в природе действует закон со­хранения электрических зарядов.

Тело, на которое перешли электроны, будет иметь их избыток. Согласно закону сохранения электрический заряд этого тела будет равняться алгебраической сумме по­ложительных зарядов всех протонов и зарядов всех электронов. Этот его заряд будет отрицательным и по значению равным сум­ме зарядов избыточных электронов.

Закон сохранения электрического заряда

Внутри диэлектрика суммарный заряд равен нулю, а на поверхностях заряды не скомпенсированы и создают внутри диэлектрика поле, вектор напряженности которого направлен противоположно вектору напряженности внешнего поля. Это значит, что внутри диэлектрика поле имеет меньшую напряженность, чем в вакууме.

однако существуют теоретические аргументы в пользу того, что такой однофотонный распад не может происходить даже в случае, если заряд не сохраняется.
Другой необычный несохраняющий заряд процесс — спонтанное превращение электрона в позитрон
и исчезновение заряда (переход в дополнительные измерения, туннелирование с браны и т. п.). Наилучшие экспериментальные ограничения на исчезновение электрона вместе с электрическим зарядом и на бета-распад нейтрона без эмиссии электрона:

Ссылка на основную публикацию