Признак Делимости На 47

Признак делимости на 11
Число делится на 11 тогда и только тогда, когда сумма цифр с чередующимися знаками делится на 11 (то есть 182919 делится на 11, так как 1 — 8 + 2 — 9 + 1 — 9 = -22 делится на 11) — следствие факта, что все числа вида 10 n при делении на 11 дают в остатке (-1) n .

Признак делимости на 10 n +1
Разобьем число на группы по n цифр справа налево (в самой левой группе может быть от 1 до n цифр) и найдем сумму этих групп с переменными знаками, считая их n-числами. Эта сумма делится на 10 n + 1 тогда и только тогда, когда само число делится на 10 n + 1.

ТЕОРЕМА 3 (для P = 3, 13, 23, 43, 53, 73, 83, …):
Пусть P – простое число с цифрой 3 на конце (т.е. P = 10n+3), n – число десятков числа P, N = 10x + y. Тогда если (x + (3n+1)y) делится на P, то и N делится на P.
Доказательство:

Если (x + (3n+1)y) делится на P, то x + (3n+1)y = sP и x = sP — (3n+1)y. Тогда N = 10x+y = 10( sP- (3n+1)y)+y = 10sP-30ny-10y+y = 10sP-3y(10n+3) = 10sP-3yP = P(10s-3y) делится на P.

если (X-29Y) делится на 97, то и N делится на 97.
Пример: N=1261. X=126, Y=1, X-29Y=126-29 · 1=97 — делится на 97, значит и 1261 делится на 97. Действительно, 1261:97=13.

Положим наши находки (признаки делимости) в математическую корзинку.
Вроде бы наша прогулка подошла к концу. Нет и ещё раз нет! Мы подошли к самому интересному! Давайте присядем, передохнём и посмотрим на наши творения.
Внимательно взглянув на таблицу 2 , замечаем: для простых чисел, оканчивающихся на единицу ( P = 11, 31, 41, 61, 71 ), число k одно и то же ( k = 1 ). Что это, случайность? Пока не ясно. Вновь глянем на таблицу 2. А если простые числа кончаются на 3 ( P = 13, 23, 43, 53, 73, 83 ), то число k = -3 . Если же простые числа кончаются на 7 ( P = 17, 37, 47, 67, 97 ), то k = 3 . Наконец, для простых чисел с девяткой в конце ( P = 19, 29, 59, 79, 89 ), число k = -1 .
Пожалуй, это закономерность. Разберёмся в этом подробнее. Продолжим нашу прогулку по математической тропинке.

Для всех P, кончающихся на 1 (P = 11, 31, 41, 61, 71) имеем P = 10n + 1, где n – число десятков.
Если k = 1, то из (3) имеем m = (1-kP)/10 = ( 1-1(10n+1) )/10 = -n .

И наоборот, если m = -n, то из (2) k = (1-10m)/P = (1-10(-n))/(10n+1) = 1 . Получаем теорему.

ТЕОРЕМА 2 (для P = 11, 31, 41, 61, 71, …):
Пусть P – простое число с цифрой 1 на конце (т.е. P = 10n+1), n – число десятков числа P, N = 10x + y. Тогда если (x — ny) делится на P, то и N делится на P.
Доказательство:

Если (x — ny) делится на P, то x — ny = sP и x = sP + ny. Тогда N = 10x+y = 10( sP+ny)+y = 10sP+10ny+y = 10sP+y(10n+1) = 10sP+yP = P(10s+y) делится на P.

Признак Делимости На 47

Признак делимости на 11
Число делится на 11 тогда и только тогда, когда сумма цифр с чередующимися знаками делится на 11 (то есть 182919 делится на 11, так как 1 — 8 + 2 — 9 + 1 — 9 = -22 делится на 11) — следствие факта, что все числа вида 10 n при делении на 11 дают в остатке (-1) n .

Призннак делимости на 101
Разобьем число на группы по 2 цифры справа налево (в самой левой группе может быть одна цифра) и найдем сумму этих групп с переменными знаками, считая их двузначными числами. Эта сумма делится на 101 тогда и только тогда, когда само число делится на 101. Например, 590547 делится на 101, так как 59-05+47=101 делится на 101).

ПРИЗНАКИ ДЕЛИМОСТИ

Второй вид — признаки делимости на делители числа 10 k — 1 : для делимости любого целого числа N на любой целый делительq числа 10 k — 1 необходимо и достаточно, чтобы сумма k-циферных граней числа N делилась на q. В частности (при к=1, 2 и 3), получаем следующие признаки делимости на делители чисел 10 1 — 1 = 9 (II1), 10 2 — 1=99 (II2) и 10 3 — 1 = 999 (II3):
II1 . На 3 и 9 —сумма цифр (одноциферных граней) числа должна делиться соответственно на 3 и 9. Например, число 510 887 250 делится на 3 и 9, так как сумма цифр 5+1+0+8+8+7+2+5+0=36 (и 3+6=9) этого числа делится на 3 и 9; число 4 712 586 делится на 3, но не делится на 9, так как сумма цифр 4+7+1+2+5+8+6=33 (и 3+3=6) этого числа делится на 3, но не делится на 9.

Вам будет интересно ==>  Акт Приема Передачи Дел От Юриста Компании

II2 . На 3, 9, 11, 33 и 99 — сумма двуциферных граней числа должна делиться соответственно на 3, 9, 11, 33 и 99. Например, число 396 198 297 делится на 3, 9, 11, 33 и 99, так как сумма двуциферных граней 3+96+19+ +82+97=297 (и 2+97=99) делится на 3, 9,11, 33 и 99; число 7 265 286 303 делится на 3, 11 и 33, но не делится на 9 и 99, так как сумма двуциферных граней 72+65+28+63+03=231 (и 2+31=33) этого числа делится на 3, 11 и 33 и не делится на 9 и 99.

При́знак дели́мости — правило, позволяющее сравнительно быстро определить, является ли число кратным заранее заданному без необходимости выполнять фактическое деление. Как правило, основано на действиях с частью цифр из записи числа в позиционной системе счисления (обычно десятичной).

  • Число делится на 2 тогда и только тогда, когда последняя цифра делится на
  • 2 (т.е. чётная).
  • Число делится на 3 тогда и только тогда, когда сумма цифр делится на 3 (т. к. все числа вида 10^n при делении на 3 дают в остатке единицу.).
  • Число делится на 4 тогда и только тогда, когда число из двух последних цифр делится на 4.
  • Число делится на 5 тогда и только тогда, когда последняя цифра делится на 5 (т.е. равна 0 или 5).
  • Число делится на 6 тогда и только тогда, когда оно делится на 2 и на 3 (т.е. оно чётное и сумма его цифр делится на три).
  • Число делится на 7 тогда и только тогда, когда результат вычитания удвоенной последней цифры из этого числа без последней цифры делится на 7 (т. н. 364 делится на 7 т. к. 36-2*4 = 28 делится на 7).
  • Число делится на 8 тогда и только тогда, когда число из трех последних цифр делится на 8.
  • Число делится на 9 тогда и только тогда, когда сумма цифр делится на 9.
  • Число делится на 10 тогда и только тогда, когда последняя цифра — ноль.
  • Число делится на 11 тогда и только тогда, когда сумма цифр с чередующимися знаками делится на 11 (т. е. 182919 делится на 11 т. к. 1-8+2-9+1-9 = −22 делится на 11 (т. к. все числа вида 10^n при делении на 11 дают в остатке 1 или -1.).
  • Число делится на 12 тогда и только тогда, когда оно делится на 3 и на 4.
  • Число делится на 13 тогда и только тогда, когда результат вычитания последней цифры умноженной на 9 из этого числа без последней цифры делится на 13 (т. н. 858 делится на 13 т. к. 85-9*8 = 13 делится на 13).
  • Число делится на 14 тогда и только тогда, когда оно делится на 2 и на 7.
  • Число делится на 15 тогда и только тогда, когда оно делится на 3 и на 5.
  • Число делится на 25 тогда и только тогда, когда две последние цифры делятся на 25 (без остатка).
  • Число делится на 1001 тогда и только тогда, когда оно делится на 7, 11 и 13. Если любое трёхзначное число умножить на 1001, то оно повторится ещё 1 раз. Например: 101*1001=101101.
  • (на 8 число делится только когда три последних цифры образуют трехзначное число делящиеся на восемь(уточнение имеющегося правила))

4 16 25 22 10 1 4 16 25

Чтобы определить, делится ли число A на число B, нужно разбить делимое А на части с произвольным количеством n цифр в каждой. В первой слева части цифр может быть меньше или равно n . Если в последней части цифр меньше, чем n , то дописать в конце столько нулей, чтобы было n цифр.

Признаки делимости чисел

  • Признак делимости числа на «2» Число делится нацело на 2, если число является четным (последняя цифра равна 0, 2, 4, 6 или 8)
    Пример: Число 1256 кратно 2, поскольку оно заканчивается на 6. А число 49603 не делится нацело на 2, поскольку оно заканчивается на 3.
  • Признак делимости числа на «3» Число делится нацело на 3, если сумма его цифр делится на 3
    Пример: Число 4761 делится на 3 нацело, поскольку сумма его цифр равна 18 и она делится на 3. А число 143 не кратно 3, поскольку сумма его цифр равна 8 и она не делится на 3.
  • Признак делимости числа на «4» Число делится нацело на 4, если последние две цифры числа равны нулю или число, составленное из двух последних цифр, делится на 4
    Пример: Число 2344 кратно 4, поскольку 44 / 4 = 11. А число 3951 не делится нацело на 4, поскольку 51 на 4 не делится.
  • Признак делимости числа на «5» Число делится нацело на 5, если последняя цифра числа равна 0 или 5
    Пример: Число 5830 делится нацело на 5, поскольку оно заканчивается на 0. А число 4921 не делится на 5 нацело, поскольку оно заканчивается на 1.
  • Признак делимости числа на «6» Число делится нацело на 6, если оно делится нацело на 2 и на 3
    Пример: Число 3504 кратно 6, поскольку оно заканчивается на 4 (признак делимости на 2) и сумма цифр числа равна 12 и она делится на 3 (признак делимости на 3). А число 5432 на 6 нацело не делится, хотя число заканчивается на 2 (соблюдается признак делимости на 2), однако сумма цифр равна 14 и она не делится на 3 нацело.
  • Признак делимости числа на «8» Число делится нацело на 8, если три последние цифры числа равны нулю или число, составленное из трех последних цифр числа, делится на 8
    Пример: Число 93112 делится нацело на 8, поскольку число 112 / 8 = 14. А число 9212 не кратно 8, поскольку 212 не делится на 8.

Признаки делимости чисел на 2, 3, 4, 5, 6, 8, 9, 10, 11, 25 и другие числа полезно знать для быстрого решения задач на Цифровую запись числа. Вместо того, чтобы делить одно число на другое, достаточно проверить ряд признаков, на основании которых можно однозначно определить, делится ли одно число на другое нацело (кратно ли оно) или нет.

Однако во многих случаях воспользоваться признаком делимости на 9 не представляется возможности, также как и выполнить деление на 9 . В таких случаях логично попробовать представить исходное выражение в виде произведения нескольких целых множителей, один из которых делится на 9 . Покажем два способа получения такого произведения.

Достаточно очевидно, что . Сумма цифр числа равна 9·n , а 9·n делится на 9 , следовательно, по признаку делимости на 9 можно говорить о делимости 10 n −1 на 9 при любом натуральном n .

Методический материал к уроку математики по теме Признаки делимости

Мудрец выслушал их проблему и сказал: «Не волнуйтесь, никого убивать не придётся. Я вам одолжу своего верблюда на время. Теперь у вас 20 верблюдов и они легко делятся на 2, на 4 и на 5. Десять верблюдов для старшего брата, пять – для среднего, а четыре или одна пятая, для младшего. Остается один верблюд лишний, но помните, вы должны мне одного верблюда. Я его забираю обратн

Древнегреческий математик Евклид ( III в. до н.э.). В его главной работе «Начало» подведен итог предшествующему развитию греческой математики. Он ввел понятие иррационального числа, показал бесконечность множества простых чисел, изложил аксиоматический способ построения геометрии, которая сейчас изучается в школе.

Чтобы узнать, делится ли заданное число на составное, нужно разложить это составное число на взаимно простые множители, признаки делимости которых известны. Взаимно простые числа — это числа, не имеющие общих делителей кроме 1. Например, число делится нацело на 15, если оно делится нацело на 3 и на 5.

Рассмотрим другой пример составного делителя: число делится нацело на 18, если оно делится нацело на 2 и 9. В данном случае нельзя раскладывать 18 на 3 и 6, поскольку они не являются взаимно простыми, так как имеют общий делитель 3. Убедимся в этом на примере.

Следовательно число делится на 6 тогда и только тогда, когда учетверённое число десятков, сложенное с числом единиц, делится на 6. То есть из числа отбрасываем правую цифру, далее суммируем полученное число с 4 и добавляем отброшенное число. Если данное число делится на 6, то исходное число делится на 6.

Каждый член правой части (5) делится на m следовательно левая часть уравнения также делится на m. Рассуждая аналогично, получим — правая часть (6) делится на m, следовательно левая часть (6) также делится на m, правая часть (7) делится на m, следовательно левая часть (7) также делится на m. Получили, что правая часть уравнения (4) делится на m. Следовательно A и A’ имеют одинаковый остаток при делении на m. В этом случае говорят, что A и A’ равноостаточные или сравнимыми по модулю m.

Признак делимости на 10n-1
Разобьем число на группы по n цифр справа налево (в самой левой группе может быть от 1 до n цифр) и найдем сумму этих групп, считая их n-значными числами. Эта сумма делится на 10n — 1 тогда и только тогда, когда само число делится на 10n — 1.

Признак делимости на 11
Число делится на 11 тогда и только тогда, когда сумма цифр с чередующимися знаками делится на 11 (то есть 182919 делится на 11, так как 1 — 8 + 2 — 9 + 1 — 9 = -22 делится на 11) — следствие факта, что все числа вида 10n при делении на 11 дают в остатке (-1)n.

При́знак дели́мости — правило, позволяющее сравнительно быстро определить, является ли число кратным заранее заданному без необходимости выполнять фактическое деление. Как правило, основано на действиях с частью цифр из записи числа в позиционной системе счисления (обычно десятичной).

  • Число делится на 2 тогда и только тогда, когда последняя цифра делится на
  • 2 (т.е. чётная).
  • Число делится на 3 тогда и только тогда, когда сумма цифр делится на 3 (т. к. все числа вида 10^n при делении на 3 дают в остатке единицу.).
  • Число делится на 4 тогда и только тогда, когда число из двух последних цифр делится на 4.
  • Число делится на 5 тогда и только тогда, когда последняя цифра делится на 5 (т.е. равна 0 или 5).
  • Число делится на 6 тогда и только тогда, когда оно делится на 2 и на 3 (т.е. оно чётное и сумма его цифр делится на три).
  • Число делится на 7 тогда и только тогда, когда результат вычитания удвоенной последней цифры из этого числа без последней цифры делится на 7 (т. н. 364 делится на 7 т. к. 36-2*4 = 28 делится на 7).
  • Число делится на 8 тогда и только тогда, когда число из трех последних цифр делится на 8.
  • Число делится на 9 тогда и только тогда, когда сумма цифр делится на 9.
  • Число делится на 10 тогда и только тогда, когда последняя цифра — ноль.
  • Число делится на 11 тогда и только тогда, когда сумма цифр с чередующимися знаками делится на 11 (т. е. 182919 делится на 11 т. к. 1-8+2-9+1-9 = −22 делится на 11 (т. к. все числа вида 10^n при делении на 11 дают в остатке 1 или -1.).
  • Число делится на 12 тогда и только тогда, когда оно делится на 3 и на 4.
  • Число делится на 13 тогда и только тогда, когда результат вычитания последней цифры умноженной на 9 из этого числа без последней цифры делится на 13 (т. н. 858 делится на 13 т. к. 85-9*8 = 13 делится на 13).
  • Число делится на 14 тогда и только тогда, когда оно делится на 2 и на 7.
  • Число делится на 15 тогда и только тогда, когда оно делится на 3 и на 5.
  • Число делится на 25 тогда и только тогда, когда две последние цифры делятся на 25 (без остатка).
  • Число делится на 1001 тогда и только тогда, когда оно делится на 7, 11 и 13. Если любое трёхзначное число умножить на 1001, то оно повторится ещё 1 раз. Например: 101*1001=101101.
  • (на 8 число делится только когда три последних цифры образуют трехзначное число делящиеся на восемь(уточнение имеющегося правила))

Признак делимости чисел на 15 очень часто нужен для решения контрольных и экзаменационных заданий. Например, зачастую в базовом уровне ЕГЭ по математике встречаются задачи, основанные на понимании именно этой темы. Рассмотрим некоторые их решения на практике.

Зачастую при решении задач нужно узнать, делится ли то или иное число на заданную цифру без остатка. Но каждый раз делить его очень долго. К тому же велика вероятность допустить ошибку в расчетах и уйти от правильного ответа. Для того чтобы избежать этой проблемы, были найдены признаки делимости на основные простые или однозначные числа: 2, 3, 9, 11. Но что делать, если нужно произвести деление на другую, большую цифру? Например, как рассчитать признак делимости на 15? Ответ на этот вопрос мы постараемся найти в данной статье.

Ссылка на основную публикацию